

Abstracts

Generalized-material-independent PML absorbers used for the FDTD simulation of electromagnetic waves in 3-D arbitrary anisotropic dielectric and magnetic media

An Ping Zhao. "Generalized-material-independent PML absorbers used for the FDTD simulation of electromagnetic waves in 3-D arbitrary anisotropic dielectric and magnetic media." 1998 *Transactions on Microwave Theory and Techniques* 46.10 (Oct. 1998, Part I [T-MTT]): 1511-1513.

By introducing the material-independent quantities (electric displacement D and flux density B) into the finite-difference time-domain (FDTD) model, a generalized-material-independent perfectly matched layer (GMIPML) absorber used to absorb electromagnetic waves propagating in three-dimensional (3-D) general anisotropic dielectric and magnetic media is proposed. Within the proposed GMIPML absorber, D and B are directly absorbed, whereas E and H are simultaneously absorbed through the relations between E and D , as well as H and B . It is shown that with the help of this GMIPML absorber, Berenger's perfectly matched layer (PML) absorbing boundary condition (ABC) can be simply and effectively extended to 3-D arbitrary anisotropic materials consisting of both arbitrary permittivity and permeability tensors.

[Return to main document.](#)